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the Line Scan Transform 

Michael Cannon and Tony Warnock 
 

Abstract - We present a shape descriptor that uniquely describes an object, is supported in n-dimensional 
space, and is statistical in nature.  The descriptor is based on the line scan transform of Cabo and 
Baddeley.  We show several applications of the descriptor. 
 
Index Terms – shape, shape descriptor, shape metric. 

 
1 Introduction 
 

Shape description is an important part of machine learning and scientific data analysis.  A 
shape description method results in a shape descriptor which can be compared to other 
descriptors in order to categorize and/or better understand the object under study.  Pavlidis [1] 
divides shape description methods into two categories, those based on shape boundary points and 
those based on the interior of the shape.  If boundary points are used, the shape descriptor can be 
represented by its Fourier transform [2], a chain code [3], or its bending energy [4].  If the 
interior of the shape is used, then the shape descriptor might be represented by the medial axis 
[5], moments [6], or mathematical morphology [7].  Sensitivity to noise and small shape 
variations are two important considerations when selecting a descriptor, as is the ability to 
uniquely reconstruct the shape from its descriptor.  Objects are compared by comparing their 
descriptors, which are conceptually subtracted from each other to form a scalar metric – the 
closer the shape of the objects, the smaller the difference in metric value. 

The shape descriptor described in this paper is based on the line scan transformation of Cabo 
and Baddeley [8].  It has the nice feature of taking both boundary points and shape interior into 
consideration and, unlike most descriptors, it uniquely represents the shape of an object or set of 
objects when a sufficiently large sample of lines is used.  It is supported in n-dimensional space 
and is also statistical in nature in that it is based on a random sampling process, and in this regard 
it is similar to work by Osada [9] on length distributions in which shapes are compared by 
comparing histograms of line lengths. 
 
2 Descriptor Components 

The shape descriptor described in this paper is composed of a sum of line scan transforms; 
each transform is computed on a line randomly thrown across an object or set of objects.  The 
metric is the absolute difference between the descriptors of two sets. 

 
2.1 The Line Scan Transform 

Our description of the line scan transform in Euclidean space dℜ is based on the work of 
Cabo and Baddeley [10] .  A set of objects, dS ℜ⊂ , is defined as a collection of any number of 
convex and concave objects as shown in the two-dimensional example in Figure 1. 
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The intersection Sl I of a line l  with the set is a finite union of n compact intervals with 
ordered endpoints nxxxx 2321 ,...,, .  In the case of our example, the intervals are 

2 1 3 2 4 3, , ,x x x x x x− − −  etc.  Using these, the line scan transform is then defined as 
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for all interval lengths 0>ξ , and where  
{ } ξξ >−=>−Ι ik xx

otherwiseik xx ,1
,0{ . 

The novelty of G becomes obvious only after close inspection.  If ik xx −  represents an 
interval strictly interior or exterior to an object, the sum is incremented.  On the other hand, if 

ik xx −  represents a collection of intervals that are both interior and exterior, the sum is 
decremented. 
 
2.2 The Shape Descriptor 

The shape descriptor, ,δ  of a set of objects is the average of the line scan transform of each 
randomly thrown member line l of the set of lines L  

( ) ( )∑ ∩=
L

SlNS G ξξδ 1 , 

where N  is the number of lines in L .  ( )ξδ S  is unique [10] for any S as ∞→N . It is possible, 
though not common, for ( )ξδ S to be negative for certain values of ξ .  It is worth noting that the 
value of ( )0Sδ  is the average number of objects in the set. The shape descriptor has some rare 
exceptions [11].  There are two known convex polygons with the same chord distribution and 
thus the same line scan distribution. Occurrences of this type seem to be extremely rare [12,13]. 

 
2.3 The Shape Metric 

The shape metric µ for two object sets S  and T  is defined as 

( ) ( ) ( ) lll dTS TS∫
∞

−=
0

, δδµ . 

The metric as shown here is not scale invariant, but can be made so using any of several common 
methods [14], depending on the application.   
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Figure 1.  A set of objects in 2ℜ  intersected 
with a line to form a set of closed intervals. 
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2.4 Method of Random Line Placement 
We generate lines that randomly and uniformly cover a set of objects [15].  Care must be 

taken that the distribution of the set of lines is probabilistically invariant under rigid rotations and 
translations. The object of interest is encompassed by a circle in 2ℜ  or sphere in 3ℜ , and the 
sampling lines are constructed within the enclosure.  The sampling lines can be generated within 
a unit circle or sphere then scaled to encompass the object. We generate a set U of uniformly 
distributed random numbers and draw samples from it such that Uui ∈ .  In two dimensions, we 
generate the midpoint Pc of a random line as shown in Figure 3, 

 

 
where 

1ur =  
and 

22 uπθ = . 
 
In three dimensions, we generate each of two endpoints on the surface of the sphere by 
generating coordinates such that 
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In Figure 4 we illustrate a set of random lines in two dimensions that was generated in this 
manner. 
 
 

Figure 3. A random line is generated by determining its 
midpoint, Pc, which is based on the randomly chosen r and θ.
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3 Computational Considerations 

The uniformly distributed points used in sampling are generated using Warnock’s 
modification of Halton’s quasi-random sequence [15]. A quasi-random sequence ω has the 
advantage of generating lines that approach a uniform distribution more quickly than would be 
the case using randomly generated points. The same set of lines is used for all objects so as to 
make comparisons more meaningful [16]. 
 
The ( )P Nω  sequences are defined for each natural number N and each prime P by the following 
procedure. 
 

1. Write the number N in base P: 
0

j
jN a P

∞

=∑  where only a finite number of the ja  are 

non-zero. 
2. Modify the ja  by multiplying by a number PS  and reducing the result modulo P: 

( )modj P jb S a P= . 

3. Accumulate the resulting number with the new digits reversed: ( ) 1

0

j
P jN b Pω

∞
− −=∑ . 

 

Figure 4.  A set of randomly distributed lines on a circle. 
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For the examples presented in this paper, the sequences used are based on the primes 3, 5, 7, 
and 11 with associated modifiers S of 2, 2, 5, and 3 respectively. For example, the 14th line in 
two dimensions would use ( )3 14ω and ( )5 14ω  which can be computed as follows: 

210 31313214 ∗+∗+∗=  which is transformed into ( ) 27
17321

3 32323114 =∗+∗+∗= −−−ω  
and 10 525414 ∗+∗=  which becomes ( ) 27

1921
5 545314 =∗+∗= −−ω . 

The actual computation of the line scan ( )l SG ξ∩  can be done as follows. The ordered points of 
intersection , ( )1 2 3 2, , ,..., nx x x x , give rise to ( )2 1n n −  segments. Each segment contributes to a 
histogram by scoring +1 if the subscripts of the endpoints of the segment have different parity 
and -1 if the parity is the same. This process is repeated over all the lines in the sample.   

After all segments of all the sampling lines have been added to the histogram, a running total 
of the histogram is made starting with the longest length. If the histogram has m elements, then 

1mh +  is set to zero and the histogram is modified by 1i i ih h h += +  with i  running from m to zero. 
This use of the associative law allows each segment to be scored without scanning the segments 
individually along their length. The algorithm is equivalent to treating the indicator function , 
{ } ξξ >−=>−Ι ik xx

otherwiseik xx ,1
,0{ , as a Heaviside function; adding its derivative to the histogram; then 

integrating the result. 
 
4 Examples 
 
4.1 A Three-Dimensional Sphere and Cube 

In Figure 5, we show a set of two objects in 3ℜ .  The set consists of a sphere of diameter 2 
centered at the origin with a smaller cube of edge size 0.5, internal and later external to the 

sphere, all defined analytically.  In Figure 6 we initially show the descriptors of the sphere and 
cube separately.  The next two descriptors represent the cube internal to the sphere, first centered 
on the origin, then shifted along one axis.  The last two descriptors represent the cube emerging 
from and external to the sphere. 

 

Figure 5.  A cube of edge length .5 enclosed in a 
sphere of diameter 2.  Both objects are solid. 
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4.2 A Sphere Morphing to an Ellipse 

We will use the six objects in Figure 7 to illustrate the shape descriptor and metric.  The first 
is a perfect circle, the others represent an elongation in the vertical axis of the circle in 

increments of one percent, a change possibly unnoticed by the unalerted eye.  As the vertical axis 
lengthens, we would expect to see longer lengths appear in the corresponding shape descriptor, 
as indeed we do in Figure 8. 

Figure 7.  The left-most object is a perfect circle of diameter .5.  Proceeding to
the right, the objects have an elongation in the vertical axis in increments of 1%. 
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Figure 6.  The 3-D shape descriptors for a sphere and a cube. For the two cases in which the
cube is contained within the sphere, the resulting shape descriptor is approximately that of the
sphere minus that of the cube.  On the other hand, when the cube is emerging or external to the
sphere, the descriptor is dominated by the size of the sphere and the distances between it and
the cube.  Not visible on the plot are small but non-zero values near lengths of 2.5. 
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The shape descriptors change in an interesting manner when the edges of the objects are 
perturbed by random noise, as we show in the case of the circle in Figure 9.  
 

Figure 9  The circle perturbed by random noise.  The diameter remains .5, but the
image has been magnified to show the edge effects more clearly.  The remaining
objects in figure 7 were perturbed in a similar manner. 

Figure 8.  The shape descriptors of the six objects in figure 7.  Note the maximum length contained within 
the perfect circle is .5, its diameter. The descriptors of the other objects indicate the presence of longer 
lengths as the vertical axis of the circle is lengthened.  (The large number of very short lengths indicated in 
each descriptor is the result of spatial quantization.) 
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As shown in Figure 10, the shape descriptors for the corresponding objects are different in 
three ways.  First, the descriptors indicate the presence of longer lengths resulting from the 

addition of the noise.  Second, the number of very short lengths, lengths close to the added 
random noise, is increased greatly.  Third, and least expected, is the decreased value of each 
descriptor at lengths around .02.  We speculate that this is caused by the introduction of many 
short intervals that lie internal and external to the noise in the edge regions. 

The metric used to compare the shape of two objects is obtained by calculating the absolute 
difference in the corresponding shape descriptors.  In Figure 11 we show the metrics for each 
object in Figure 7 compared with the perfect circle as well as the metrics for the noisy objects 
compared to the noisy circle. 

Figure 10.  The shape descriptors for the objects in Figure 7 after the edges are 
perturbed by random noise.  The descriptor of the perfect circle of radius .5 is 
drawn in the heavier line. 
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4.2 Shock-Induced Instabilities 
In Figure 12 we show several examples of three gas columns that have been impacted by a Mach 
1.2 planar shock front [17].  We have learned experimentally that the gas will assume one of the 
four morphologies depicted in Figure 12 
. 

  As a test of the shape metric, we first compute the line scan transforms of each of the four 
morphologies and plot them, as shown in Figure 13.  We compute the metric of the similarity  

Figure 12.  We depict the four morphologies assumed by three gas columns
after being impacted with a Mach 1.2 planar shock front. 

Figure 11.  We plot metrics for the noisy and clean objects.  Note that the difference 
between the noisy circle and itself as well as the clean circle and itself is zero. 
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of each morphology to morphology One by computing the absolute difference between the line 
scan transform of morphology One and each of the transforms for the four morphologies.  These 
values are plotted in Figure 14 and compared with values obtained from Hu moments.  In this 

particular example, the two methods differ on which morphology is closest to One, but they 
agree on Morphology Two being the least similar to One, a finding probably consistent with 
different human observers 
 

Figure 13.  The line scan transforms of the four morphologies.  Note that the value of 
( )0Sδ  is approximately equal to the number of objects in each of the morphologies 

in Figure 12. 
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Figure 14. We compare the four morphologies in Figure 12 with Morphology One, the left-most.  We 
use two comparison methods, the first based on the line scan transform, the second on Hu moments.  
The results are comparable, and both methods show Morphology Two as most different from One.  The 
two methods differ on which morphology is closer to One, with the LST favoring Three and Hu 
moments Four. 
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5 Conclusion 
We have presented a novel shape descriptor based on the line scan transform.  Our initial 
experiments with it suggest that it performs in a logical and useful manner and may be useful in 
certain image analysis problems. 
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